INTENDED USE
The K-ASSAY® Factor XIII Assay is an in vitro reagent for the quantitative determination of Coagulation Factor XIII in human plasma.

For IN VITRO DIAGNOSTIC USE.

INTRODUCTION AND SUMMARY
Coagulation Factor XIII is a transglutaminase that plays an important role in hemostasis since it participates in the final stages of the coagulation cascade. It is an enzyme of the blood coagulation system that cross-links and stabilizes fibrin. By polymerizing fibrin monomers, it enables the formation of a firm blood clot.

PRINCIPLE OF TEST
Lactose particles coated with antibody specific to human Factor XIII form immune complexes in the presence of Factor XIII from the sample. The immune complexes cause an increase in light scattering, which is proportional to the concentration of Factor XIII in the plasma sample. The light scattering is measured by reading turbidity at 500 to 600 nm. The sample Factor XIII concentration is determined versus dilutions of a Factor XIII calibrator of known concentration.

KIT COMPOSITION
Reagents (Liquid Stable)
R1: Buffer Reagent 2 x 9.5 mL
Tris Buffer, Sodium Azide 0.05 %
R2: Latex Suspension 1 x 6 mL
Latex suspension/ Anti-human Factor XIII rabbit polyclonal antibody, Sodium Azide 0.05 %

WARNINGS AND PRECAUTIONS
For IN VITRO DIAGNOSTIC USE. Rx only.

Not to be used internally in humans or animals. Normal precautions exercised in handling laboratory reagents should be followed.

Do not mix or use reagents from one test kit with those from a different lot number.

Do not use reagents past their expiration date stated on each reagent container label.

Do not pipette by mouth. Avoid ingestion and contact with skin. The buffer solution is weakly alkaline (pH ~ 9.3). Avoid direct contact to skin and eyes. If contact occurs, flush with copious amounts of water and seek medical attention if necessary.

Reagents in this kit contain sodium azide as a preservative. Sodium azide may form explosive compounds in metal drain lines. When disposing of reagents through plumbing fixtures, flush with copious amounts of water. For further information, refer to “Decontamination of Laboratory Sink Drains to Remove Azide Salts,” in the Manual Guide-Safety Management No. CDC-22 issued by the Centers for Disease Control, Atlanta, Georgia.

REAGENT PREPARATION
Reagents are ready to use and do not require reconstitution. Before use, gently invert Reagent 2 at least once a week.

STORAGE AND HANDLING
All reagents should be stored at 2-8°C.

REAGENT STABILITY
Unopened reagents can be used until the expiration date shown on the package and bottle labels if stored at 2-8°C. Once the reagent vial has been opened, store tightly capped at 2-8°C and use within 1 month. Discard reagents if they become contaminated. Evidence of obvious precipitation in reagent 2 (R-2) solution is cause to discard.

SPECIMEN COLLECTION AND PREPARATION
Plasma
Whole blood is collected in a tube containing 3.2% buffered sodium citrate (blue-top). After collection, immediately mix the sample with the anticoagulant by gently inverting the tube at least six times. Centrifuge and carefully remove the plasma. Plasma samples should be assayed within 4 hours, or stored frozen until they can be tested.

AUTOMATED ANALYZER APPLICATION
Suitable for two-reagent automated analyzers that can measure a test reaction at an absorbance of 500 to 600 nm. Refer to the instrument manufacturer’s directions for the following:

a) Use or function
b) Installation procedures and requirements
c) Principles of operation
d) Performance characteristics, operating instructions

CALIBRATION
Use a multi-point calibration curve to be made using the K-ASSAY® Factor XIII Calibrator. It is recommended that the user determine calibration curve frequency as this depends on the instrument and type/number of other assays being performed. Initially, calibration should be performed each day.

QUALITY CONTROL
A quality control program is recommended for all clinical testing laboratories. It is recommended that at least two levels of control (with known concentrations of Factor XIII) be included in all assay runs.

The values obtained for controls should ideally fall within the manufacturer’s specified range. However, due to differences in assays and analyzers used to assay a control by the manufacturer, a laboratory may establish its own control ranges by assaying the controls a sufficient number of times to generate a valid mean and acceptable range.

CALCULATIONS
Factor XIII levels are determined by the analyzer using the linear regression analysis of the prepared calibration curve.

LIMITATIONS OF PROCEDURE
If Factor XIII value is greater than the highest calibrator value, dilute sample with K-ASSAY® Factor XIII Calibrator Diluent (provided with K-ASSAY® Factor XIII Calibrator, KAI-106C) and re-assay.

REAGENT STABILITY
Store at 2-8 °C, 4.5 min
→ 37°C, 4.5 min
→ 37°C, 3.8 min
Start read: 358 seconds, 546 nm, Final read: 498 seconds, 546 nm
Note: Allow all reagents and specimen to warm to room temperature (18-25°C) Mix all reagents gently before using.

Automated Method
Parameters for automated analyzers are available.

CALIBRATION
A multi-point calibration curve should be made using the K-ASSAY® Factor XIII Calibrator. It is recommended that the user determine calibration curve frequency as this depends on the instrument and type/number of other assays being performed. Initially, calibration should be performed each day.

QUALITY CONTROL
A quality control program is recommended for all clinical testing laboratories. It is recommended that at least two levels of control (with known concentrations of Factor XIII) be included in all assay runs.

Two levels of quality control material of known values should be run according to state, federal, and accreditation requirements or whenever there are questionable results or instrument performance, always maintain or manufacturer’s service, with each new lot of reagent, and at a minimum of every 30 days for opened vials to check storage conditions.

The values obtained for controls should ideally fall within the manufacturer’s specified range. However, due to differences in assays and analyzers used to assay a control by the manufacturer, a laboratory may establish its own control ranges by assaying the controls a sufficient number of times to generate a valid mean and acceptable range.